Search results for "Orbital analysis"
showing 3 items of 3 documents
Cation Environment in BaCeO3-Based Protonic Conductors: a Computational Study
2009
Geometry calculations were performed on pure BaCeO(3) fragments and on Y- and In-doped derivatives. HF and DFT approaches were used to investigate monoclinic and orthorhombic structures. The computational methods, structural models, and electronic structure investigation protocols were tuned taking into consideration and balancing the consistency of the results against the computational cost. The calculated structures and energetics parameter, as well as the detailed orbital analysis performed on the corresponding BaCeO(3) derivatives allowed us to explain experimental findings and to develop a procedure to study the cationic octahedral environment of doped X:BaCeO(3) (X = Y, In) and undope…
Host–guest inclusion complexes between peracetylated β-cyclodextrin and diphenyl(4-phenylphenyl)phosphine : computational studies
2006
PM3 and molecular dynamic calculations were performed upon the inclusion complexation of peracetylated β-cyclodextrin (Per-Ac-β-CD) with diphenyl(4-phenylphenyl)phosphine (DBP). Results show that the 4-phenylphenyl part of the DBP phosphine fits tightly in the cavity of the Per-Ac-β-CD, leading to the formation of stable inclusion complexes. Complexation energies indicate that the complex formed via the primary side of the Per-Ac-β-CD is more stable than that formed via the secondary side. Electrostatic potential mapping and frontier orbital analysis suggest that van der Waals interaction constitute a major driving force in the complexation of the DBP and Per-Ac-β-CD.
Outbursts Large and Small from EXO 2030+375
2008
During the summer of 2006, the accreting X-ray pulsar EXO 2030+375 underwent its first giant outburst since its discovery in 1985. Our observations include the first ever of the rise of a giant outburst of EXO 2030+375. EXO 2030+375 was monitored daily with the Rossi X-ray Timing Explorer (RXTE) from 2006 June through 2007 May. During the giant outburst, we discovered evidence for a cyclotron feature at ~11 keV. This feature was confidently detected for about 90 days, during the brighter portion of the outburst. Daily observations of the next five EXO 2030+375 orbits detected pulsations at all orbital phases and normal outbursts shifted to a later orbital phase than before the giant outburs…